How to Choose the Best Telescope


Humans’ fascination with the stars is as old as our ability to think and ask questions. For millennia we, as a species, were limited to observing the heavens with just our eyes. Of course, back then we were able to see more because light pollution didn’t exist, but making detailed observations was impossible. The invention of the microscope led to the development of the telescope, which allowed people to finally start exploring the larger universe. As technological advances were made and telescopes got bigger and better, their reach and the details they could resolve became broader and more intricate. These advances caused us to question doctrines that many believed were immutable, and doubt institutions we were taught infallible. Astronomy led the way to the acceptance of science, the rise of the Enlightenment, and incalculable advances not only to our understanding of our world and universe, but also the philosophical questions about our place in that world.

The History

In the late 1500s, two Dutch eyeglass makers, father and son Zaccharias and Hans Janssen, developed and began experimenting on a crude microscopic device. Their work was disseminated, as inventions often are, and it wasn’t long before someone built on their microscopy work and reconfigured their lenses to bring distant objects closer. The first patent application for a telescope was by another Dutch eyeglass maker named Hans Lippershey, in 1608. The Janssens and Lippershey lived in the same town and evidence suggests that they not only knew each other, but influenced each other’s work. Compounding the confusion, yet another Nederlander, Jacob Metius, applied for a patent for a telescope a few weeks after Lippershey. The government of the Netherlands eventually rejected both applications because of the counterclaims, and, officials said, the device was easy to reproduce, making it difficult to patent. In the end, Lippershey is credited with inventing the telescope and the Janssens the microscope.

In 1609, famed Italian mathematician and scientist Galileo Galilei learned of the work being done with lenses in the Netherlands and began refining the Janssen system, eventually adding a focusing mechanism. He apparently developed the telescope on his own, and is the first known person to point a telescope skyward. He was able to make out mountains and craters on the moon, as well as a ribbon of diffuse light arching across the sky—the Milky Way galaxy, the sun’s sunspots, and Jupiter’s own set of moons.

Galileo with his handheld Refractor-style telescope

These first telescopes would be instantly familiar to modern people. They were Refractor-style scopes with a larger lens in the front and an eyepiece at the back—what we usually picture in our minds when we think of what a telescope looks like. These refractors had lenses that were upwards of 60-70mm in diameter and, given the lack of light pollution, allowed astronomers to view quite a lot. A limitation of these early refractors was color fringing, known as chromatic aberration, that is caused when light passing through a lens is broken up into various colors as the glass bends various wavelengths differently. This chromatic aberration affected the ability to see colors correctly and to clearly resolve certain celestial objects.

A modern Refractor-style telescope

In 1668, Sir Isaac Newton, among his innumerable achievements, sought to solve the chromatic aberration problem. His solution was as simple as it was groundbreaking: Remove the lens from the equation completely. Newton replaced the primary lens with a polished, rounded, metal mirror—what we today call the Newtonian Reflector style of telescope. The light rays no longer passed through glass; instead, they were reflected by mirrors and concentrated into the eyepiece, so bright images were no longer surrounded by a colorful halo. Unfortunately, Newton couldn’t eliminate another common problem: spherical aberration (distortion)—especially at the edges of the field of view—caused by the shape of the primary mirror. With this new reflector design, Newton was also able to make larger mirrors more easily than comparable lenses, which allowed more light to be gathered, offering him better views than earlier, smaller refractor telescopes could produce.

Over the course of the following years, mathematicians attempted to solve Newton’s problem and, while calculations determined that a new type of mirror—called a Parabolic—was possible, it wasn’t until 1721, 53 years after Newton’s original invention of the reflector, that John Hadley built a telescope with a parabolic mirror that displayed very little spherical aberration.

Over the decades, many permutations and variations were developed. Some were successful, many others not so much. Through the 1800s, refractors and reflectors were refined and improved as the Industrial Revolution moved forward. They grew larger and the glass and grinding became more precise, but moving into the 20th century, the standard designs were reaching their maximum sizes.

Developments outside the realm of astronomy were being made that would help change the way telescopes were designed and built: as early as 1876, catadioptric lens systems were in use around the world in such diverse areas as lighthouse reflectors and microscopes. As it applies to optics, this system combines both lenses and mirrors to produce images without chromatic or spherical aberrations.

The first full–diameter corrector plate was used in Bernhard Schmidt's 1931 Schmidt camera. This was a wide-field photographic camera, with the corrector plate at the center of curvature of the primary mirror, producing an image at a focus point inside the tube assembly where a curved film plate or detector is mounted. The relatively thin and lightweight corrector allowed Schmidt cameras to be constructed in diameters of more than 50 inches. Over the years, building on the catadioptric principals in general and particularly on Schmidt’s design, the camera was modified into an observation optic and a new category of optical tube assembly was created. Other innovators developed variations such as Schmidt–Cassegrain, Maksutov, Maksutov-Cassegrain, Argunov-Cassegrain, and Klevtsov-Cassegrain. All these variants are grouped together in the catadioptric category and all use a combination of lenses and mirrors to correct for chromatic and spherical aberration in different ways by applying similar principals.

Catadioptric telescope: note the secondary mirror placement in the middle of the front corrector plate.

The 20th Century saw the rise of giant research telescopes, from the 60" Mount Wilson Observatory to the 238" BTA-6 in Russia. A persistent problem from the beginning of reflector telescopes was that the mirrors had to be removed and re-silvered to maintain their high reflectivity. When dealing with smaller apertures, this was an inconvenience. With these massive mirrors, this became a real problem. In 1932, a physicist at the California Institute of Technology successfully devised a method to aluminize a mirror through a process known as thermal vacuum evaporation. This not only revolutionized the research telescope industry, it helped set the stage for the rise of the amateur astronomer. The BTA-6 is notable for another milestone: it was the first computer-controlled telescope that helped move the massive optical tube assembly and mount. As we moved through the middle of the 20th Century, technological advances began coming faster and faster, and each advance set the stage for dawn of the Digital Age.

Just as the aluminization process represented a leap forward in mirror technology, a small telescope manufacturer in California, known as Celestron, developed a method to mass-produce Schmidt corrector plates using a vacuum to pull the glass into a curved mold. This enabled the company to lower the cost of Schmidt-Cassegrain telescopes drastically, and opened the amateur market to a wider audience. While Celestron was making reflectors and Cassegrains, a rival company was focusing on refractors: Meade Instruments. Realizing that Celestron was cornering the market on Cassegrains, Meade entered the market and a period of innovation, spurred by competition, helped the amateur astronomy field flourish.

The greater portion of astronomical history relied on manual manipulation of the mount to track objects across the night sky. The problem with handling the mount is that it causes vibrations that interfere with the observation process. A logical step was retrofitting motors onto manual mounts to reduce the vibrations and allow for greater concentration during observation sessions. As the new century approached, and technology shrunk, mount makers began integrating small servo and stepper motors into their offerings. It was only a matter of time before the computer revolution would hit astronomy.

Stepper motors: capable of precise micro-movements and variable speed without vibrations, critical for telescope tracking

Mounts had been computer controlled since the 1970s, but they needed to be tethered to a computer. And remember: back then there were no MacBook Airs and, even into the ’90s, laptops were still heavy and prohibitively expensive and astronomy software was very rudimentary. In the late 1990s, Meade released a revolution: the AutoStar hand controller. This computer controller, first introduced on the company’s LX90 ETX, was easy to use with a menu-driven user interface. While you still had to polar-align the scope manually and properly and learn basic astronomy, the ETX changed amateur astronomy. It was small, lightweight, with an integrated motorized mount and, most importantly, the AutoStar plugged directly into the mount and was powered by the same AA batteries driving the motors. At the dawn of the 21st century, hundreds of years of progress finally came together that allowed the wide-scale development of amateur astronomy: easy-to-produce optical systems with practically no aberrations, virtually vibration-free motors and, most importantly, self-contained computer controllers.

The game-changer: Meade’s AutoStar

Now that we’re firmly entrenched in The Future, we’re seeing the continued evolution of the computer-controlled telescope. From mobile device interfaces, to using GPS and high-resolution digital cameras to automate the alignment process, technology continues to drive the consumer and research telescope markets. In the last few years, Celestron announced and then rolled out the first line of consumer scopes that have integrated local Wi-Fi to connect the mount directly to a smartphone or tablet running an astronomy app. Both Meade and Celestron have proprietary versions of digital alignment aids (StarLock and StarSense, respectively) which are outfitted with digital cameras that take pictures of the night sky and automatically set up the scope for viewing, constantly checking and correcting its tracking during your observation session.

With Internet connectivity and superior processing power, unheard of when the AutoStar was released, you can now use your smartphone or tablet to display a virtual planetarium with all the objects you can see, and with a tap on the screen your mount will go to that object. Want to know the history of that constellation you’re looking at? There’s an app for that. Want a guided tour of the night sky on any given night? No problem. Want that guided tour with audio and/or video commentary? You can have that, too.

Terminology 101

The Optical Tube Assembly, or OTA, is the main part of the telescope. It gathers light and it’s where the eyepiece and all optical accessories go.

The Mount is what the OTA is attached to and is responsible for the how the user aligns, moves, and tracks celestial objects. A more detailed explanation on the different mounts is below, but for now you just need to know that there are three principal types: Alt-Azimuth (AZ or Alt-Az), German Equatorial (EQ), and Motorized. Motorized mounts can be of either Alt-Az or EQ, but are usually set aside to differentiate them from manual mounts.

Go-To is a term that gets used a lot and is relatively new to the amateur astronomer. It’s applied to a motorized mount that is partially or wholly computer controlled. The term comes from the controller’s ability to “go to” a specific location automatically on its own, as opposed to the user manually moving the mount.

Aperture is the diameter, usually measured in millimeters, of the objective (primary) lens or mirror of the telescope. Essentially, the larger the aperture, the brighter images will appear, and the deeper into space you will be able to see.

The Aperture, looking down the front of the telescope

Focal length is the measurement, again in millimeters, from the objective to the eyepiece. This length directly affects the magnification potential of the telescope when paired with an eyepiece. The distance can be a literal linear measurement from the primary lens to the eyepiece, as with a refractor; or a theoretical distance based on how the light is bounced from primary to secondary mirrors and then into the eyepieces. This theoretical distance, used with reflectors and catadioptrics, will create a focal length that is longer than the actual optical tube—making the OTA more portable while significantly boosting the magnification potential beyond a similarly-sized refractor.

The basic anatomy of a Refractor-style telescope

Focal Ratio is a term that will be familiar to photographers, but it is important to certain astronomers, as well. This term is defined as the ratio between the focal length of the scope and the aperture. A 100mm aperture 1500mm focal length telescope will have a focal ratio of f/15. The obvious question is why knowing this is important. There are several answers.

The f-number can give you an idea of the overall size and portability of the scope if you’ve never seen it before—smaller f/ratios equal shorter focal lengths, and therefore shorter OTAs. Let’s say you’re considering buying a 12" f/5 or a 12" f/15 Dobsonian. Just by looking at the f/ratios, you can tell that the f/5 one will have a much shorter tube length and can probably be handled by one person, whereas the f/15 will be massive. Specifically, the f/5 will have an optical tube a little over 5' long, while the f/15 OTA would be more than 15 feet long.

As far as astrophotography is concerned, the f/ratio plays an important role. The smaller the ratio, the “faster” the scope is, making the exposure times required for capturing images shorter, since the light inside the OTA will travel a shorter distance and will remain more concentrated than a slower (longer) scope. Having shorter exposure times means that any tracking errors will be less noticeable while providing you more time to take more images that you then can stack in post-production.

Magnification is the number of times in size an object appears, compared to viewing it with the naked eye. A magnification of 32x means what you are looking at will look thirty-two times larger than when viewed unmagnified. The magnification is calculated by dividing the eyepiece focal length into the telescope focal length. So, a telescope that has a 1500mm focal length, using a 25mm eyepiece will produce a magnification of 60x, and a 10mm eyepiece produces 150x. As you can see, the longer the telescope focal length and the shorter the eyepiece focal length, the higher the magnification achieved.

A note on magnification: Many new astronomers fall into the “more power” trap, but that urge should be ignored when first learning astronomy. There are some unforeseen issues that arise as magnifications increase. Notable among them are: increased appearance of image shake due to wind or vibrations; decreased image brightness; shortened eye relief, causing the user to bring their eye into the eyecup, causing vibrations; and diminished exit pupil, which makes viewing in darkness difficult. Unless you’ve been observing for at least a year or so, stick with moderate to low magnifications—the images will be smaller, but they will be brighter and sharper, and viewing them will be much more comfortable.

The Moon unmagnified as seen with the naked eye
The Moon at 32x: Note the increased image size & detail inversely…

Coatings are microns-thin and applied in multiple layers to optical surfaces to increase the performance of the scope. When applied to lenses, these coatings help to prevent incoming light from being reflected from the surface (and thereby lost), and will be optimized for nighttime viewing of celestial objects—generally focusing on accentuating certain wavelengths for improved viewing. When applied to mirrors (whether primary, secondary, or those in diagonals), they increase reflection with the intention of achieving 100% reflection. The best coatings are dielectric, which can reach upwards of 99+%.

Glass is what the lenses are made of. With most decent (and some not-so-decent) models, the lenses will be made of optical glass—already superior to conventional glass—to help reduce spherical and chromatic aberrations and to produce clear and crisp images. Better scopes will employ extra low-dispersion (ED) or fluoride glass for superior aberration correction.

I’ve been mentioning chromatic and spherical aberrations a lot in the preceding paragraphs, so let’s look a bit deeper into what those terms mean.

Chromatic Aberration

Different colors of light have different wavelengths and pass through the glass at different, but predictable, speeds: Shorter wavelengths travel faster than longer ones, so when they come out the other side of the lens, the various colors of light from a single object gets to your eye at different times.

The shape of a mirror or lens may cause this aberration, as well. In regard to lenses, the shape of the lens causes it to be thicker or thinner in certain points; as a result, the light passing through the thicker part will take longer than that passing through the thinner areas. For mirrors, the light in the center reflects straight down the OTA, but the light at the edges needs to travel farther, again causing the light to strike your eye at different times. In extreme cases, the distortion is so bad that you’ll see a halo around objects that can interfere with your observation. As we’ve seen, chromatic aberration has been a problem since the very first telescope was developed, and many different telescope designs, optical coatings, and glass have been employed specifically to correct this.

Spherical Aberration

This has also been around from the beginning of astronomy. It is caused by the curvature of the mirrors or lenses required to focus the light to a single point. In order to see an image, the light entering the optical system from a large mirror or lens needs to be focused to a single small point—the focal point—so you can see the object with your eye. If the grind, polish, or placement of the lenses or mirrors within the optical path isn’t perfect, the light might not be focused correctly and overshoot or fall short of the focal length. This will result in distortion and/or the inability to achieve sharp focus.

The development of the reflector helped to correct for chromatic aberration, but the mirror, by its very nature, had inherent spherical aberration. To correct this, the catadioptric class of telescopes was developed through the use of corrector plates. With refractors, multiple lenses stacked at the front of the telescope helps this correction. Every refractor on the market today is doublet—meaning there are two lenses—that help correct both aberrations. Higher-end refractors will be in a triplet configuration that adds a third lens for further correction. Triplets are optimal, and essential for astrophotography.

Perception versus Reality

This section deals with the gap between what you expect to see through a telescope and what you will actually be able to see. Most people barely remember a time, or haven’t lived in a world, without the Hubble telescope, nor can they remember a time when they couldn’t immediately check out pictures on the Internet. There is an entire generation that has literally grown up on high-resolution images of space and the universe in general; and the Moon, planets, galaxies, nebulae, and any number of celestial objects in particular.

As a result, we’ve come to expect Saturn and its rings to look like what we see when we Google it on our HD screens. It won’t. It’s going to be small—quite small. It’s going to look like Saturn, but just a smaller version of it, compared to what we see on our iPad, laptop, or 4K television. But here’s the thing: with a telescope, you get to see it for yourself. It’s an incredibly personal experience. New astronomers, of any age, need to be aware of this before investing in a telescope. As a telescope user and astronomy advocate, I suggest that anyone with an interest should take a spin around the Internet and make sure their interest survives. No matter how much money you pour into buying a telescope, there’s very little chance that anything you look through will compare to images that are taken in space and professionally manipulated.

Saturn after multiple exposures are stacked, filters applied, and color…
Saturn as it will appear when viewed through a telescope

And by “professionally manipulated” I’m not saying “Photoshopped.” The images you see on the Internet are, virtually without exception, a composite of dozens, or hundreds, or thousands of images taken over the course of a night, or a month of nights, using physical filters at the time the exposure was taken, or digital filters applied during the stacking process. Incalculable amounts of manipulation can be applied with editing software to make that one “perfect” picture. But remember: no amount of Internet surfing can replace the absolute thrill of seeing a planet or galaxy or nebula for the first time with your own eye.

Finally, there’s the effect that the Quality of the telescope has on what can be seen. As we’ve discussed, certain things can improve image quality, such as ED or fluoride glass, specialized optical coatings, and the overall precision of the grind and engineering. Be aware that skimping on the quality will have a significant effect on what and how well you can see. At the end of the day, you may want to forego a large aperture on a low-quality scope for a smaller aperture, higher-quality scope that costs the same.


In our discussion of the evolution of telescopes, we outlined the three basic kinds: refractor, reflector, and catadioptric. Now, we come to the part where we discuss which one to acquire. Sadly, there is no answer that will satisfy everyone (or anyone, for that matter). All types have their strengths and weaknesses, so the choice you have to make is going to be based on what you want to see and what you want to spend. What we’re discussing here is strictly based on optical performance; later we’ll bring mounts and tripods and other support systems into the mix to give you the full picture.


The simplicity and reliability of the design makes it easy to use and requires little maintenance. These are excellent for observing objects within our solar system—planets and the Moon and, with the right accessories, they can be used for terrestrial viewing. Since the optical system is basically a straight line, there are no obstructions from secondary mirrors as there are in Newtonians or catadioptrics. With optical options like triplet configurations and specialized glass, aberrations can be virtually eliminated.

Refractor-style telescope: note the eyepiece positioned at the rear.

There are a few downsides, however. They tend to be more expensive per inch of aperture than the other two designs. The lens systems tend to make them heavier than similarly sized Newtonians and catadioptrics. And because of their limited available apertures, they tend to have difficulty seeing dim deep-space objects.

Finally, the overall superior optical performance of a refractor makes it an ideal platform for astrophotography or astro-imaging.


Utilizing a large primary mirror, the Newtonian gives you greater value per inch of aperture, since making a mirror is less labor-intensive than making lenses. However, to get the light focused and into an eyepiece, it is bounced from the primary mirror to a secondary mirror, placed near the front of the OTA facing the primary mirror and set at a 45-degree angle to the primary mirror, which sends the image into the side-mounted eyepiece. This secondary mirror causes a slight obstruction to the light entering the OTA, which results in light diffraction and loss. Additionally, in traditional reflectors, the OTA is open to the elements, so they tend to require a certain amount of maintenance to keep the mirror free from dust, dirt, and pollen. A variation of a Newtonian is the Schmidt-Newtonian, which places a corrector plate at the front, thereby helping to reduce spherical aberration and sealing the system for easier maintenance.

Because you can get large apertures out of the mirrors and the lengthened focal length due to the light being reflected from the primary to secondary mirrors and then to the eyepiece, reflectors are ideal for seeing the deep-sky objects that refractors often miss, such as galaxies and nebulae.

Reflector-style telescope: note that the eyepiece is positioned near the front of the optical tube assembly.

On a side note, large reflectors with extremely large apertures and optical tubes several feet long are identified as Dobsonians. These over-sized OTAs can see incredibly dim objects, but are very bulky and heavy—usually requiring disassembly for transport. Many Dobsonians are trailer-mounted and simply towed behind a car or truck to the observation site, or permanently installed in backyard observatories.


These are defined by their long focal lengths with short optical tubes. Utilizing a folded optical path, light enters through a thin, aspheric correcting plate, reflects off a spherical primary mirror at the back of the tube, where it is again reflected from a smaller secondary mirror located directly behind the front corrector plate and to the back to the optical tube and through an opening in the rear of the instrument to form an image at the eyepiece.

Catadioptric telescope: the eyepiece is located in the back, in a similar position to a refractor telescope.

This optical configuration creates a compact and portable OTA that is virtually maintenance free and easy to use. It offers larger aperture per inch than refractors, but tends to be more expensive than similarly sized reflectors. Catadioptrics are excellent for all types of near and deep-sky viewing, except for extremely dim objects. This configuration shares the secondary mirror obstruction that we discussed above with reflectors.


The mount you choose is just as important as the optical tube assembly. As we touched upon earlier, mounts can be loosely grouped into two categories: Alt-Azimuth (Alt-Az, AZ) and Equatorial (EQ). Each of these allows you to move the telescope to track objects in the sky. Basic earth science teaches us that the Earth rotates, so as you observe an object, it will appear to move across your field of view, causing you have to move the telescope accordingly. To visualize this movement, think of when the sun rises in the East, moves across the sky, then sets in the West—every observable object in the sky tracks a similar path, except for Polaris, which is set directly above the North Pole and creatively called the Pole Star. All calculations and coordinates for celestial navigation in the Northern hemisphere are taken from their position relative to the Pole Star. The speed at which an object moves is relative to the distance it is from Earth: The moon moves very fast, requiring nearly constant tracking; while a deep-sky object like a galaxy moves comparatively slowly. Similarly, the higher the magnification, the faster it appears to move versus a lower magnification.

Alt-Azimuth This is the most common and basic mount. It has two perpendicular axes on which the scope moves: up/down (Alt or Altitude) and left/right (Az or Azimuth). Lower-end models will require you to grab the OTA to move it by hand, while others offer knobs or flexible cables to make adjustments. The downside to these mounts is that to track objects as they move across the sky, you need to manipulate each axis constantly and simultaneously—imagine drawing an arc on an Etch-a-Sketch.

Alt-Azimuth mount: note the basic design's absence of control cables or handles.

As an aside, Dobsonians tend to use a modified Alt-Az mount that rests on the floor or ground, owing to their large apertures and long tubes. While they are considered Alt-Az mounts, they look and operate slightly differently and only a few of them are motorized; but since Dobsonians are almost exclusively used for extreme deep-sky objects, the amount of correction required is greatly reduced.

German Equatorial Much more precise and more intricate than an Alt-Az, the German Equatorial (EQ) mount has two axes: one that controls declination and another that describes an arc that matches the curvature of the Earth—the right ascension. The mount needs to be aligned with the Pole Star (Polaris in the Northern Hemisphere) and once that’s done, if you know the coordinates of a celestial object you can find it and—most importantly—track it simply by turning the right ascension adjustment. There’s a pretty steep learning curve to figuring out how to use an EQ mount properly, so you need to be prepared for a lot of research and reading in the weeks and days leading up to your first observation session with one.

German Equatorial mount: note the intricate nature of the mount, counterweights, control cables, and adjustment points.

Speaking from experience, for math or science nerds, there are very few things as cool as going through all that prep work, setting up the mount under the stars, properly aligning it, moving the scope to the selected coordinates, then looking in that eyepiece and seeing Saturn for the first time. The thought of that first experience for me still brings goose bumps.

For astrophotography, you’ll want to use an EQ instead of an AZ. The reason is that since an EQ tracks along a single axis, the entire sky will remain fixed, whereas when using an AZ, while the object you are pointed at will remain centered, it and the star field behind it will rotate—this is important when using long-exposures as that “field rotation” will cause the stars to appear streaked in the photo and the object in the center blurred as it rotates on its center axis. Ideally for astrophotography, you’ll want a motorized EQ to reduce vibrations and track easier.

While most commercially available mounts fall into these two categories, there are variations that need to be mentioned, mainly because they are growing in popularity as they fall in price.

The first is motorized mounts. As the name implies, these have motors for tracking. Both EQ and Alt-Az can be motorized, but the question arises as to why you would want to? Primarily, the advantage of adding motors is to increase precision and decrease vibration. The motors used on mounts are generally stepper or servo-motors that can move at various speeds with very little vibration. This allows you to spend more of your concentration observing than turning knobs. Also, anytime you touch the scope in any way, you cause vibrations—tiny, slight, minute, vibrations—but when you’re looking through an eyepiece with high magnification, those little vibrations translate into scene-obliterating ocular earthquakes. Hyperbole? Not really. If you can use a simple hand controller to direct the scope rather than touch it, that’s the way to do it. Depending on the mount and manufacturer, you may be able to retrofit motors onto manual mounts or they may come integrated into the mount at the time of purchase. Often, you will see a “standard” manual model and an upgraded version with motors.

Motorized/Computer-controlled mount: the hand controller is plugged into the mount to control the motors.

The second variation is computer controlled. Having the mount motorized is a prerequisite to having it computer controlled. In the past, most computerized mounts relied heavily on the user properly aligning the scope, and knowing what they wanted to see.

Support Systems

Almost as important as your OTA and mount is the platform on which you put your rig. The support system will give your telescope stability and will affect vibrations from handling the scope, the wind blowing, or even ground vibrations from nearby people, cars or equipment. When making your decision, you need to consider how and where you will be using your telescope: Will you keep it in a backyard observatory with a retractable roof? Will you keep it set up in your garage and wheel it out on a dolly? Will you break it down and set it up close to home, or will you be trekking out far away from civilization? Each of these options will help you decide on what kind of support system you will want to use.

Beyond this, another thing to be mindful of is how high it can go and where will the tripod/mount/OTA combination place the eyepiece. For example: The eyepiece on Newtonian OTA with an EQ mount will be in a radically different position than a refractor on the same mount. If the eyepiece is set very low, causing you to lean over or squat, the increase in blood pressure to your head can cause your eye to change shape and affect your ability to see properly. You need to make sure that the platform you use allows you to observe in a natural position throughout your entire range of motion, from the horizon up to the zenith.

Left: viewing through a Reflector allows you to stand in a natural position. Right: viewing through a refractor with the same mount and tripod requires you to sit.

Far and away, most people will choose a tripod. As you might imagine, all tripods are not created equal. They will vary greatly based on size, weight, material, and stability. Be mindful of the carrying capacity rating for the tripod to make sure it can even physically handle the OTA and mount, with room for any accessories and counterweights you might use down the road. Generally speaking, you will want to get the largest one you can use. If you are observing from your backyard, a large and heavy tripod might not be a huge inconvenience but if you are hiking miles into the back woods, hauling it might not be easy—or even possible. For dolly mounting, weight becomes less of an issue, so again, bigger is better. Also, since one of the principal tasks of the tripod is to reduce or eliminate vibrations, the heavier it is, the less it will be affected by wind and other forces.

Tripods are easier to move and store, and come in a variety of sizes and weights with varying degrees of stability.

Useful accessories to improve the experience with a tripod are anti-vibration pads. These extremely common pads are placed on the ground for each of the three tripod legs to stand on. They absorb tiny vibrations and steady the rig. Second is a mini-pier. This accessory is placed between the top of the tripod and mount to add height for more comfortable viewing, as described above. Any given mini-pier is usually built for a specific mount head, and adds height without sacrificing stability.

A less popular, but much more stable platform is a pier. It is usually a large pedestal-type mount that would get bolted to a concrete pad or footing. This rock-solid platform is meant for telescopes that are permanently set up in observatories, which includes backyard sheds with retractable/removable roofs.

Permanent Pier: ideal for large and heavy telescope systems that tripods could not support


So far in our discussion of OTAs, we’ve described the way the light is gathered and how it is directed to a single point for observation. This point is where the eyepiece is located. Specifically, on refractor and reflectors, the eyepiece sits in a drawtube that is part of the focuser. Simply put, the focuser allows you to move the eyepiece forward or back to bring the image in the eyepiece into focus for observation. There are two main types of focusers: rack-and-pinion and Crayford style.

Most drawtubes are offered in 1.25" diameter, so they will accept 1.25" eyepieces. In this discussion, the 1.25" refers to the diameter of the barrel, not the focal length of the eyepiece. These are the workhorses of eyepieces, the most popular, and offer the most variation across the board. Larger-diameter focusers and eyepieces push into 2" and even 3" behemoths. Why would you need a 2 or 3" eyepiece? Field of view and eye relief. A 2" eyepiece with the same focal length of a 1.25" will have a larger field of view and longer eye relief, which pulls your eye back from the eyepiece so you won’t have to touch it—which would cause vibration. Adapters are available for 2 and 3" focusers that will allow you to use smaller-diameter eyepieces in them for greater versatility. For astrophotography, a larger focuser allows more light coverage for bigger imaging sensors.

Most OTAs offer a single-speed focuser, but some higher-end models offer two-speed options. The coarse focus knob allows fast focusing to get you close to perfect focus. A smaller knob (usually on just one side) has an internal reducer gear that allows for precision fine focusing. The reducer gear, typically between 7:1 and 10:1, will slow the movement of the drawtube, allowing for micro-adjustments. The ratio listed above means, for example, that 10 rotations of the fine focus knob equals one rotation of the coarse focus. Obviously, for small objects or imaging, you’ll want a two-speed focuser to get the view tack-sharp.

Several manufacturers offer an electronic focuser as an optional accessory that can be independently controlled (useful for manual mounts) or connected to a control panel and operated through a master hand controller (such as with motorized GoTo mounts). Using an electronic focuser allows you to achieve a level of precision focusing that is nearly impossible to do by hand, with virtually zero vibration.

A rack-and-pinion style has a grooved rail, usually on the bottom of the drawtube, which sits on a matching grooved wheel. The axis of the wheel will have generally have knobs on each end that you turn to move the tube in and out for focusing. This kind of focusing is very popular and easy to produce and use. The downside is that the resolution power is dependent on the size of the grooves (or teeth)—smaller teeth allow for more precise focusing. Additionally, when you release the knob after focusing it, there can be a backlash where the rail and wheel settle, causing it to lose that fine focus.

Rack-and-Pinion focuser

The more precise Crayford-style fixes the backlash and resolving issue by using a tension system. A spring holds a steel rod tightly against a smooth drawtube. When the focusing knob is turned, the tension of the rod pushing against the tube causes it to move forward or back. This allows extremely precise focusing without backlash. Crayfords tend to be more expensive and will usually only be standard on higher-quality OTAs, but there are many after-market focusers that you can retrofit onto OTAs with rack-and-pinion focusers. The principal downside to a Crayford is that if you have heavier accessories, like a big astrophotography rig, it might not be strong enough to support it. Rack-and-pinions generally have greater weight capacity, so if you’re planning on having a substantial rig hanging off your focuser, you may want to consider the rack-and-pinion and sacrifice that ultra-fine focus for stability.

Crayford-style focuser

Catadioptric OTAs generally use an internal focusing system that does not fall into either of the above categories. Located at the back of the OTA next to the eyepiece holder, the internal focuser will move the primary mirror forward and back to achieve focus. This relies primarily on a screw and is often as precise as a Crayford, but there tends to be a lag between when you move the screw and see the correction, so be patient and move slowly when using this kind of focuser. To change from 1.25 to 2 to 3" eyepieces, you can use adapters as mentioned above, or simply get a different eyepiece holder all together.


A telescope doesn’t have an intrinsic magnification. In order to obtain any magnification you need an eyepiece. Just as an OTA has a focal length, so does the eyepiece. In order to figure out the magnification you’ll be observing with, there’s a simple calculation you need to perform: OTA focal length / eyepiece focal length. For example, if your OTA has a 1000mm focal length and you use a 25mm eyepiece you will observe at 40x. Replace the 25mm eyepiece with a 10mm in the same OTA and the magnification changes to 100x. As noted above, many people will go out and buy the smallest eyepiece available because more is always better, right? Wrong. Extremely high magnification will produce an image of a planet that is very large, but you will not be able to see details and it will quite probably be very shaky. A good rule of thumb is to max out your magnification at 20-30x per inch of aperture. So, you shouldn’t go higher than 160-240x with an 8" OTA, or 100-120x with a 4". This will allow you see the images without affecting your ability to discern detail.

Eyepieces: typically offered in a wide variety of focal lengths with 1.25" and 2" diameter barrels

Just like the optics used in the OTA, the optics of eyepieces are important, as well. Quality varies greatly with ED glass, anti-reflection coatings, and lens elements that create wide and ultra-wide fields of view. You’re better off buying one excellent eyepiece with a medium magnification than multiple lower-quality ones.


Filters are used to emphasize or eliminate certain wavelengths of light to improve image quality. My colleague, Cory Rice, has written an article specifically on astronomy filters, so I won’t go into too much detail here, but I will touch on a few points. Like everything else we’ve discussed, quality matters, so look for glass filters that have their tints added when the glass is being produced, as opposed to applied as a coating after. Filters can be used individually or stacked for greater effect and can truly enrich what you see.

Without OIII filters
With OIII filters

First, if you’re going to observe the moon, you must have a moon filter. The moon effectively acts as a giant reflector for the sun. Thus, when it’s at more than half phase, it gets extremely bright, and during a full moon, you can cause permanent damage to your eye if you view it without a filter.

Second, multiple filters can—and should—be used for observing the same object. For example, you can use a #15 Deep Yellow filter to bring out Martian surface features, and a #25A Red to increase definition of the Martian polar ice caps and maria. If you get a set of filters, and you should, consider getting a filter wheel. This will attach to the focuser and would be loaded with different filters. When you’re observing, simply rotate the wheel to a different filter so you don’t have to remove the eyepiece and change them individually.

Third, specialized filters allow you to see the unseeable. Certain nebula filters will emphasize certain wavelengths by excluding all other wavelengths, thereby allowing a very specific narrow band through, and will show parts of a nebula that the human eye couldn’t detect otherwise. Similarly, light-pollution filters help filter out ambient light to make celestial images brighter, with greater detail.

Optical Accessories

Several accessories can be used to increase the value of your eyepieces or correct for imperfections in the optical system. All of these accessories enhance image quality and will make a huge difference for both observation and imaging. As always, quality matters.

Barlow lenses of 2x or 3x are popular because they allow you to double or triple the magnification of each of your eyepieces without affecting the eye relief or your ability to focus and resolve the images that might occur if you used a shorter focal length eyepiece to achieve a similar magnification. As mentioned above, if you have a single high-quality eyepiece, picking up a quality Barlow lens will be less expensive, while giving you two magnifications from one eyepiece.

Barlow lens: Shown here being inserted into a diagonal with the eyepiece already in place

Field flatteners help to eliminate distortion across the entire field of view so everything appears on the same plane from the edge to the center. This allows for a more immersive visual experience and better imaging.

Coma correctors will further correct for chromatic aberration and allow you to better split double stars and achieve tack-sharp focus of bright objects.

Astigmatism correctors improve image quality by correcting lens astigmatism that can prevent the ability to achieve perfect focus.

Diagonals Diagonals are used to make viewing more comfortable or to correct the image orientation. When viewing celestial objects with any telescope, the way light is manipulated through the optical path to your eye, a normal image is seen upside down and backward. So, to track the moon as it moves to the left in your eyepiece, you have to move the OTA to the right. Now, if you’re looking at Saturn upside down and backward, it probably won’t cause any disorientation because you have no frame of reference to what is “right-side up.” But if you decide to use your telescope for viewing a boat out on the water, you will definitely have some disorientation if the ocean is on top and the boat is up-side-down. This is where the diagonals start to come into play.

Chances are, if you have a Newtonian or Dobsonian, you won’t need them, as these have the eyepieces placed in very comfortable positions and they’re not really ideal for terrestrial viewing. You will primarily use diagonals on refractors and catadioptrics. With these, the eyepieces are set at the backs of the OTAs, so when it is pointed at or near the zenith, the eyepiece has a tendency to be pointed at the ground. Using a diagonal—either 45-degree or 90-degree—brings the eyepiece into a more comfortable viewing position. There are three different kinds of diagonals: star, erector, and flip. Keep in mind that adding a diagonal will further bend or reflect the light, so there’s the potential for light loss. Quality diagonals will use optical glass with dielectric reflective coatings to minimize light loss.

Viewed with the naked eye; the boat is moving from left to right.
Viewed through a conventional telescope
As seen using a star diagonal
Corrected view using an erector diagonal

Star diagonals simply reflect the light, and the image will be corrected vertically but not horizontally, so the image will be right-side up and backward. Whether you’re using the scope for astronomical or terrestrial viewing, your image will be right-side up, but you’ll just need to move the scope right to track it left. It’s not a big deal, but it does take a little getting accustomed to.

If you know you’ll be using the telescope for both astronomical and terrestrial viewing, consider getting an erector prism. Unlike a star diagonal, which is a simple mirror, erectors use a prism to correct the image orientation both horizontally and vertically for a more natural view and easier tracking. If you’re going to invest in an erector prism, aim for a high-quality one to reduce image degradation.

Flip mirrors will have two eyepiece holders: one in line with the focuser drawtube and one at a 90-degree angle. A lever is used to control a mirror to send the light straight to one eyepiece or up to the 90-degree-orientated eyepiece. This is used for several purposes: for one, it allows the use of two different focal length eyepieces and/or filters without needing to change the eyepieces completely. In addition, you can have an imaging system on one side and an eyepiece on the other. In between exposures, you simply flip the mirror from imager to eyepiece to confirm your subject is still centered and focused, allowing you to make corrections quickly and easily.

Mirror is "flipped" up to direct light to upper eyepiece
Mirror is "flipped" down, the light passes straight through to the back eyepiece


Whether your mount is manual, motorized, or computer controlled, at some point during your set-up and alignment process you’ll need to start by finding at least one star. Even with a low-power eyepiece, scanning the sky looking for the one star out of thousands—even the brightest ones—will be virtually impossible. For this reason, you’ll want a finderscope. These come in various configurations, from large mini-telescopes to unmagnified pointers. Regardless of the kind, your finderscope will need to be aligned with the OTA so that they are both pointed at the same point. This is easily accomplished using large objects like the moon or a distant street light, and shouldn’t take more than a few minutes.

Typical finderscope placement

Standard finderscopes are just small, low-power telescopes. Larger OTAs may push the size up to 10x50, since you’ll probably be observing deep-sky objects and will need to reach farther for finding those objects.

Dot pointers are very popular and easy to use. They are generally unmagnified and are simply a small window, a couple of inches across at most, with a red dot projected into the center. With both eyes open look through the pointer and align the dot on your subject. These are ideal for computerized scopes or EQ mounts where you’ll need to find one, two, or three bright stars to start, then use the computer controller to do the rest.

View of an unmagnified dot pointer reticle

Illuminated finderscopes are a variation of the standard ones from above, but they will have an illuminated reticle denoting the center. Usually dimmable, they allow for more precise alignment versus a non-illuminated finder.


Worthy of an article longer than this one, astrophotography and astro-imaging are part of an emerging field with innumerable permutations. You can spend upwards of $10,000 on an imaging rig, on top of whatever you’ve spent on your OTA, mount, and support system. Or you can spend $50 on a smartphone adapter that attaches to your eyepiece. For the average user, there are some basic setups that won’t break the bank.

As mentioned above, unless you’re planning on taking fast shots of the moon (which is possible, considering how close and bright it is), you will want an equatorial mount at the very least, motorized preferably, GoTo ideally. Many motorized and GoTo mounts offer multiple tracking rates for the moon, sun, planets, and deep sky; with several new models that offer the ability to customize the tracking rate for increased precision.

Using your DSLR will work, but DSLRs usually come equipped with a pre-installed IR filter in front of the imaging sensor. This filter is fine for taking pictures on the ground, but will affect your pictures of the stars. There are a few ways to mount your camera on your telescope, but the most popular method is to use a T-ring adapter that goes into your focuser and a T-ring for your camera’s specific bayonet mount. The adapter and ring screw together. You’ll also need a remote trigger (to limit additional vibrations from touching the shutter release, or to lock the shutter open or mirror up for long-exposure) and you’ll have to deactivate the autofocus and other automatic functions to give you complete control of the camera and sensor. Doing it this way with digital cameras is orders-of-magnitude easier, since you can simply delete bad photos as you refine your settings. In the pre-digital age, you could literally spend thousands of dollars on film rolls just tweaking your rig without getting one usable image.

Common DLSR rig for astrophotography

Eyepiece imagers are growing in number and popularity. These are simply an image sensor and electronic shutter tethered to a computer and controlled by imaging software. Designed to drop into the focuser, they are capable of high resolution and able to capture thousands of images a second. Using the capture software, you can then stack, filter, and fiddle with these images in thousands of ways to create a single composite photo. They come in both color and monochromatic versions, and certain models will accept standard eyepiece filters for filtering at the time of image capture.

Adapters are available for smartphones and point-and-shoot cameras, but these aren’t going to produce high-quality images; think mostly along the lines of social-media-postable pictures of the moon, and maybe some constellations.

Smartphone astrophotography adapter

A subset of astrophotography is wide-field astrophotography which is using a standard DSLR and lens to capture swaths of the night sky.

To do this right, you’ll need long exposure times, which means you’ll need a mount—preferably EQ and motorized. The mount needs to keep the same star field centered during the entire exposure period, and if the camera doesn’t move as the stars move, you’ll get star trails, which are cool if that’s what you’re going for, but annoying if it’s not.

Wide-field photograph using medium exposure time and a tracking mount
Intentional star trails created by very long exposures on a fixed mount

There are adapters and plates you can use for standard EQ or motorized alt-az mounts but, if you want to observe, you’ll need to swap your camera for an OTA or bring two rigs. Some mounting systems come with a ¼"-20 screw on the top of the mounting rings for the OTA, which allows you to mount your DSLR piggy-back style on your telescope and capture wide-field photos while you’re observing or imaging specific objects.

Recent years have seen purpose-built wide-field mounts for photo tripods that work similarly to EQ mounts, but are smaller and more compact for DSLR use, with alignment tools and right-ascension tracking, different speeds and the ability to use them in the Northern or Southern hemispheres.

Optional Accessories

Everything we’ve been discussing so far has dealt directly with observing the night sky. But there is an array of accessories to make the experience better or easier. This is by no means a complete list, just some of the more popular ones.

Power supplies and battery stations All motorized and computer-controlled mounts require power. Usually they run on batteries, usually a lot of them—upwards of 6, 8, 10, or 12, depending on the size of the mount; often AA, but also C-cell on larger power-hungry models. If you’re observing at home or near a car, you can usually get 110VAC or 12VDC adapters to power your mount. If you’re using your car, take care… you may enjoy a night of sky-gazing only to realize your car battery is dead and you’re stranded. An alternative to power adapters is a battery station. Heavy, but portable, these employ a bank of rechargeable deep-cycle batteries that will power your mount for tens of hours; more than enough for a night or weekend away off the grid. Several will have 12VDC, USB, and 5VDC ports to power your mount and other accessories, smartphones, or cameras. Some even have booster cables (just in case).

Power Station: extends telescope run time, provides light, charge accessories including smartphones

Flashlights An often overlooked tool, the simple flashlight is a must-have. You’ll need one that has a dedicated red light to allow you to see without affecting your night-adjusted vision. The light will let you maneuver around your observation sight without tripping over your tripod, choose eyepieces and accessories, or consult star charts. Many people use white lights with red filters for versatility and variable power for convenience. There are also headlights for hands-free illumination.

Red light allows you to see without affecting night-adjusted vision

Star charts have been around since astronomy’s early days and are inexpensive yet invaluable tools to show you what is available for you to see at any given time or day. Sometimes the old way is still the best way.

Books, either digital or print, are still the best way to learn about astronomy. They provide great detail on what you can see, how to find it, what you’ll be looking at, and a wealth of other information you didn’t know you needed.

Software can do similar things that books and star charts can. Some basic software is just digital observatories that can show you detailed charts, including co-ordinates for all objects. Other software will control mounts similar to the hand-controllers and apps, but with the power of the Internet behind it. Still more software packages can be used to process and manipulate your images to make them better and more impactful.

Cleaners are pretty straightforward; you’ll need to wipe dust, dirt, pollen, or dew off your optics to see clearly. Cleaners for telescopes will be designed to leave neither residue nor scratches, to keep your lenses and mirrors pristine.

Cleaning kit

Miscellaneous items can be pop-up observatories, like tents for your telescope, seats with accessory trays or pockets, hoods to block out stray light, or eye patches that allow you to work with light while you dilate your observing eye. And don’t forget a folding table for all your accessories and peripheral gear.

The Wrap-Up

Astronomy is a niche but emerging hobby that gets more popular as technology makes it easier to get out and get observing. You’ll need to go into this hobby knowing that a great rig will set you back many thousands of dollars, and even competent setups will still cost more than most people think. The best way to gauge your interest level, what you’re most eager to see, and what kind of OTA, mount, and platform are the best for you is to start with the Internet. Join forums and ask questions.

Next, join an astronomy group. You’ll be surprised how many are around and right in your neighborhood. Go to star parties and observation get-togethers. Introduce yourself and explain that you’re just getting ready to buy your first scope—we’re a community of sharers, and you are sure to be invited to view through everyone’s rig. Being exposed to the community and a wide variety rigs will help you narrow your choices.

Finally, go to a reputable dealer. That’s where you’re going to find the best brands, knowledgeable people, all the accessories, and you’ll know that your scope is new and undamaged. I’ve known many people who have purchased scopes through on-line marketplaces or friends of friends, only to find them damaged or otherwise not what they expected. Buying from reputable dealers ensures new products with the ability to exchange if there’s something wrong.

Did I leave something important out? Have a question I didn’t answer? Want to share how you got started in astronomy or have an important pro tip for other readers? Drop a comment, below.


Buying a telescope can be an exciting yet daunting task. There are many factors to consider before making a purchase to ensure you get the right telescope for your needs. Here are some things you need to know before buying a telescope:

  1. Types of Telescopes: There are three main types of telescopes - refractors, reflectors, and catadioptric telescopes. Refractors use lenses, reflectors use mirrors, and catadioptric telescopes use both.

  2. Aperture Size: Aperture size is the diameter of the telescope's main optical component, which determines how much light the telescope can gather. The larger the aperture, the more light it can gather, which means better image quality and the ability to see fainter objects.

  3. Focal Length and Focal Ratio: The focal length is the distance between the telescope's main lens or mirror and the point where the image is formed. The focal ratio is the ratio of the focal length to the aperture size. A higher focal ratio indicates a longer focal length, which means the telescope is better suited for viewing distant objects.

That is all great info to be aware of. Thanks, Amelia!

If you're interested in buying a telescope, there are a few things to consider to ensure you make an informed purchase. Here are some things you should know:

Types of telescopes: There are three main types of telescopes - refractor, reflector, and compound (also known as catadioptric). Refractor telescopes use lenses to focus light, reflector telescopes use mirrors, and compound telescopes use a combination of lenses and mirrors. Each type has its advantages and disadvantages, so you should choose the one that best suits your needs. 

Hi Zain, thanks for your comment. That's definitely good info to keep in mind when searching for a telescope!

Just bought my first Newtonian this week & boy was I lucky to find this article the same night, everything is easier having read it. Simple advise, staying away from elitism, I will bookmark & use it in all my dealings.

thanks to all who contributed. John.

Hi, John H., and thanks for posting. We appreciate the positive feedback and we're glad that this article is so useful to you. Enjoy your views of the night sky!

Thank you so much for this very informative article. As a soon-to-be, first-time telescope owner -- I have my eyes set on the Celestron CPC 1100 StarBright XLT GPS Schmidt-Cassegrain 2800mm Telescope with the Celestron 1.25" Eyepiece and Filter Accessory Kit and a 5 amp AC adapter -- I found the article extremely helpful. The article has guided my choices regarding exactly what kind of rig to purchase. Hopefully, it will become a reality for me in the near future.

HI, Bill! We are always pleased when we receive feedback from readers letting us know that our reviews and guides have helped them, and we're happy to help, too. We hope that your soon-to-be telescope provides you with the incredible wonder that is the night sky as you study the stars and planets.

This article is by far the most comprehensive and unclutter single source on Telescopes. 

We're glad you have found it useful and clear. Thanks for reading, and for your feedback.

I have a small RV where space is limited. I don’t want to sacrifice size for quality. I want the most portable set up for both viewing and imaging and light weight is also important. I have had some experience but just starting again and would like to have a system that’s Go To,easy to align,and probably an eq mount all computerized. I also don’t want to be bankrupted but am willing to go the extra mile. Since I’m interested in viewing and imaging would a flipper be advisable plus a power source, filters and filter wheel. I have an old 1970s C8 so I have some of the accessories like diagonal and eye pieces but would like to use 2”. 

Appreciate your help and any suggestions,


Btw the article is terrific!!


Hello Alfred,

Thanks for checking out the article. We invite you to contact us via Live Chat on our website until 8PM ET so we can go over the many option with you in greater detail. 

Fabulous article; Clear,  concise and easy to understand. Comprehensive discussion on all aspects of telescopes and observing. Well done!!!

I am principally a landscape photographer using a Sony A7iii. I'd like to add a telescope to my kit to first take more detailed pictures of the moon and second, dip my toes further into the astrophotography world.

Is there a basic setup that you'd recommend for a Sony A7iii shooter where I could set up a telescope on a clear night and take super close-ups of the moon?

I've got my eye on the "Star Watcher Adventurer Pro Pack" and the Redcat 51 scope/lens. This would be a little more than $1000 and then I'd mount these to my existing Really Right stuff TFC-24L tripod. 

Can anyone comment on this setup or recommend a better setup for my circumstance?

danstark on Instagram

Hi Dan,

Thanks for writing in! Sweet rig you are considering!

I am not familiar with the Redcat 51, but I have heard good things about Williams Optics—I wish we sold them!

I personally use the iOptron Skyguider Pro EQ tracking mount and I am happy with it. The iOptron has had a few hick-ups, but their customer service team always pointed me in the right direction and I was able to get things working again...the errors seemed to originate on my end, to be honest.

A couple of things:

You will likely want a longer lens for really solid lunar photography. The Redcat 51 is a 250mm f/4.9 which is fine, but I will tell you that I do most of my "close-up" lunar stuff with a Leica spotting scope at a 1500mm equivalent. Here is an article I wrote about lunar photography that will show you what to expect at different focal lengths:

I just searched the web for moon images taken through the Redcat 51 and they are good, but, in order to show a lot of detail, heavily cropped.

Before you dive in, or as you dive in, check out the YouTube channel AstroBackyard done by a Canadian photographer named Trevor Jones. He has some great content including reviews of different tracking mounts and scopes. I learn a lot from his channel.

Standing by for follow-up questions! Thanks for stopping by B&H Explora!


Something what should be worth mentioning in the beggining, if possible in CAPITAL RED LETTERS, is to NEVER point a telescope or even the finder scope to the sun, there is a lot of people that don't realize about this, and is a very dangerous thing to do.

Very good article, which every beginner should read. The experience I have with beginner's telescopes (I started in 1973) is that I would recommend to stay away from the flimsy equatorial mounts offered on low cost telescopes (such as the one shown for the illustration of the finderscope or the picture of the blue Meade telescope showing the equatorial mount in the article), they vibrate, and are a pain to use. It's much better to choose a dobsonian telescope than such a catastrophy. If you purchase an equatorial mount, expect to put some amount of money into it, it should be at least motorized, and mostly stable. Since we are at BH, search for telescopes, select by price, low to high, and you 'll get to this page: (…; ), and consider that the first telescope sold with a decent equatorial mount starts on page 3 with the Celestron Omni XLT 150mm (at 500 dollars). Less than that you waste your money. You'll be much better of with a dobsonian telescope or other type of azimutal mount, than with a pseudo equatorial vibrating and hard to use mount.

Beware also of short reflectors. Something not mentioned in the article is the fact that if the relative aperture of the mirror is long (F/9 for example) the (chinese) manufacturer can put an inexpensive spherical mirror in the telescope (machine produced), the images will be good, where as if the telescope has a short relative aperture (F/4 for example), then to get good images, the mirror _needs_ to be parabolic, which is much more expensive to produce and does not exist in inexpensive telescopes. So if you have a cheap F/4 telescope, normally it means spherical mirror with poor images. Unless... the secondary mirror they use is too small for the primary mirror. A simple solution when you see such a telescope is to put your eye in the focuser, without any eyepiece, and move your finger from the side of the top of the tube toward the center of the diameter of the tube. When you see your fingertip through the focuser, try to see if you are indeed using all the mirror, or only the central part. So you purchase a 4inch F/4 telescope, but in reality because the secondary mirror is undersized, you only have a 2.5" F/6.4 telescope. Dirty trick by the manufacturer. So on average, for low cost reflectors, stay away from the F/4 crowd, even though F/8 or F/9 has a longer tube, you are sure to get better images. I can only approve the comments made by Ted Blank before me.

A truly excellent article - Thank you

That leads me to one question I have not yet found an answer for: with the development of wide-field DSLR astrophotography (piggyback on a telescope, or with a sky-tracker type motorized mount on a tripod), why is there still no light-pollution filter for camera lenses, for those of us who do not have the luxury of a dark sky?


Really?  Not a single picture of a Dobsonian-mounted reflector?  A 6" or 8" dob is the easiest telescope to store, transport, set up and use for the absolute beginner, and 6" of aperture will blow away any beginner who views Jupiter, Saturn, lunar craters or the Orion Nebula among many other beautiful and impressive objects.  German equatorial mounts are terribly complicated for the beginner, and the worst combination is a reflector on a german equatorial mount, the proverbial "Newt on a GEM".  The eyepiece ends up in all kinds of crazy positions (like pointing down at the ground), the movements are non-intuitive, etc.

I have no relationship with any company so my advice here is strictly my own.  The Orion XT6 or XT8 dobsonian mounted reflector will satisfy any family.  There are two accessories I recommend as "must haves".  First is an adjustable-height chair for observing.  This can be a drummer's throne or a more expensive astronomy chair, but it's a requirement or your back will be killing you in 5 minutes.  Second is a Telrad red-circle finder.  These have been made for 25+  years without a single change in the design and they make finding things in the sky a breeze.  (Forget finder scopes, even right-angle ones - their field of view is small and their view is disconnected from the scope.)  Unity finders like the Telrad and Rigel Quik Finder are perfect for the beginner.

The Zhumell offerings of 6" and 8" dobsonian mounted reflectors appear to be better total bargains than the Orion offerings at the moment.  (More eyepieces, two-speed focusers, etc.)

However Orion has another option called the Intelliscope.  After pointing the scope at just two stars you can enter any object into the small Intelliscope computer handset.  Two numbers will pop-up.  One is the number of degrees left or right you need to move to point to the requested object.  The other is the number of degrees up or down you need to move to point to the requested object.  As you manually push the scope, the numbers count down.  When they are both zero, look in the eyepiece - there is your object!  Amazing and simple, and adds just about $150 to the price of a scope. 

Finally, I want to put in a plug for manual alt-az mounts with slow-motion controls, like the Explore Scientific Twilight mount.  It will hold many small telescopes and having slow-motion controls makes it easy to track objects as the Earth turns.

Oh yes - I totally agree about joining your local astronomy club.  Nice people will be happy to show you the ropes.  Also, on cloudy nights take time to read the Cloudy Nights Beginner Forum ( where the vibe is positive and answers are truly at the beginner level.

There is really not such a thing as Dobsonian type of telescope. A Dobsonian is "just" a refractor type that you can make at home (the best and funnest part of a "Dobsonian"). 

Thanks for reading and taking the time to comment, Pablo....however, I think I need to correct you on a few key points.

First, the Dobsonian-style of telescope is actually a reflector - more specifically a Newtonian reflector - which is why many enthusiasts make their own, since mirrors are much easier to obtain than a complicated doublet or triplet lens system required in building your own refractor at home.

Secondly, the Dobsonian configuration was designed and built by a man named John Dobson (hence the Dobsonian). While the light path and optical system is the same as conventional reflectors, the distinct hallmarks of a Dobsonian - such as the exceptionally large primary mirror, generous light bucket, long focal length, and the modified floor-standing alt-az mount - do set them apart from your average work-a-day reflector. The term 'Dobsonian' within the telescope community is used to differentiate this large and unique form factor from their smaller and more conventional tripod-mounted reflector cousins.

While building your own Dobsonian is a very popular hobby for many people, manufacturers have begun making and marketing their own models, with "Dobsonian" as a separate class of telescope, for those of us who do not or cannot make our own.

Have a great day,


Thanks for this wonderful article!  There's a wealth of historical and practical info here.  Just one thing, though -- I believe that the explanation of Chromatic Aberation is flawed.  It is the dependence of refractive index upon wavelength ("dispersion") that causes C.A., not the time that it takes the light to reach the eye.  Due to dispersion, different wavelengths are bent differently by the lens, resulting in different focal length for each color of light.  Compound lens designs were developed in the 19th and early 20th centuries that reduced C.A. by incorporating lens elements having different dispersion characteristics.  These were called "achromatic" and "apochromatic" designs.  

Although motorized mounts are explained, you show pictures of simple refractor and reflector scopes that might be purchased as a first scope for a youngster. The paradox is that the higher the magnification, the faster the object will move through the field of view and manually realigning the scope is not fast. You won't get much viewing time. Also, just finding an object dimmer than the visible planets such as the Andromeda galaxy can be frustrating without a good finder scope that is properly aligned with the main tube. It's almost as if you must start at "level 2" in sophistication to develop and keep interest in a younger person. This would be a "lower precision" optical tube with a motorized mount and computer guiding system. I also think having an imaging device (similar to an external laptop camera) on the eyepiece connected to a laptop for viewing (like a TV) instead of looking though the eyepiece would be even better. Several people can look at the same time and focusing would be easier.

I agree with this assessment completely. One of the most frustrating elements in keeping young or new astronomers interested, is the absolute chore of doing so successfully. I think it is advisable to make a telescope purchase up and prolong a purchase a little longer if include features, attachments, tracking capability and other things that will make the experience useful and not frustrating. We want to grow skywatching, not diminish it.